DUST ABATEMENT PROGRAM

Road Dust Testing Douglas, AZ FY 04

SPONSORED BY: U.S. MARINE CORPS SYSTEMS COMMAND

Demonstration of Application Technologies SUSTAINMENT PALLIATIVE DISTRIBUTION SYSTEM Douglas, AZ, April - 2004

	. 1	100	,	100	' 1	100	?	87	5'	10)'	10()' 1	100	°	21(0'	100	,
	500'		500'		500'		500'		500'		500'		500'		500'		500'		500'
										1		1			<u> </u>				
Î	Item 1	E	Item 2	Ę	Item 3	a	Item 4	u	Item 5	l a	Item 6	lu	Item 7	g	Item 8	g	Item 9	E	Item 10
20'	Untreated	itio	Topical w/	itio	Topical	ansitio	Windrow	Windrow USPRAY Spray Grade	Oli Windrow Spray Grade	ransitio	Spray	sitio	Spray	<u>sitio</u>	Till	itio	Till	itio	Spray
	Control	ans	Prewet	R Prewet	w/o Prewet		Spray Grade				Windrow Grade	ans.	Till Grade	ans.	Spray Grade	ans	Spray Till	ans	Till Compact
		F		F		H		F	Compact	F	Compact	F	Compact	F	Till	F	Compact	Ë	Spray
															Compact		Spray		

CONSTRUCTION PROCESSES PLAN

General Road Condition

All sections were freshly graded prior to construction and product application

Site Layout

•500 ft x 20 ft test sections

•Marked with traffic delineators

•Untreated transition areas separating sections

Section	Palliative	Method	Manpower	Time (min)
1	Water	Spray/Compact	4	60
2		Prewet/Spray/Compact	4	180
3		Spray/Compact	4	105
4		Windrow/Spray/Grade	4	42
5		Windrow/Spray/Grade/Compact	5	48
6		Spray/Windrow/Grade/Compact	5	48
7		Spray/Till/Grade/Compact	6	78
8		Till/Spray/Grade/Till/Compact	6	136
9		Till/Spray/Till/Compact/Spray	5	125
10		Spray/Till/Compact/Spray	5	46
		4 to 6	42 to 180	

Evaluation of Construction Procedures

Topical Applications

•Surface peeling

- •High concentration of product on surface
- •Product runoff

Windrowing with Motor Grader

Tilling with Rotary Mixer

•More even product dispersion
•Unnecessary to till before spraying surface
•Grading can expose untreated areas
•Excess surface moisture can lead to peeling during compaction

Recommended Construction Process

Dust Palliatives

Section	Product	Contact	Company	Dilution Ratio	Application Rate	
11				12 lb/900 gal	0.8 gsy	
12				20 lb/900gal	0.8 gsy	
13	NRL	Dr. James Wynne	NRL	3:1	0.8 gsy	
14				0.75:1	0.8 gsy	
15				3:1	0.8 gsy	
16				3:1	0.8 gsy	
17				3:1	0.8 gsy	
18				3:1	0.8 gsy	
<mark>19</mark>	SoilTac	Chad Falkenberg	Soilworks, LLC.	<mark>3:1</mark>	<mark>0.8 gsy</mark>	
20				3:1	0.8 gsy	
21				Neat	0.8 gsy	
22				Neat	0.8 gsy	
23				1:1	0.3 gsy	
24	Water			-	0.8 gsy	

- •20 lbs in 900 gal water
- •Product did not completely dissolve
- •Small balls clogged spray nozzles during application

Acrylic polymer emulsion

- •Foam began overflowing hydroseeder when tank was approximately half full
- •Problem may be reduced by adding emulsion last

Synthetic oil-based product Viscosity too high to spray with distribution bar

- •Slow setting cationic asphalt emulsion
- Section pre-wet prior to application
- •Product delivered in heated tanker and applied with distribution bar
- No compaction performed on section

Midwest Research Institute Data Collection

- •State of the art dust collection system
- •Remote controlled
- •25 mph travel speed
- •Universal mounting system

MRI Dust Collection Results

ERDC Data Collection

•Stationary dust collectors positioned on the downwind side of test section

•Ten passes with test vehicle traveling at 30 mph

•In-situ soil property measurements

ERDC Dust Collection Results

ERDC Visual Observation Rating

Preliminary Conclusions

➢ Distribution bar - limited to 10gpm nozzles. Applied at idle speed, low range. Increased size will improve operation. Uniform application rate obtained.

>Product build-up on hydroseeder engine due to overspray/misting during application.

≻Adequate mixing could not be achieved using motor grader.

≻Compaction was necessary for optimum performance but caused problems with wet surfaces.

>Rotary tiller provided means to incorporate product to desired depth.

➢ Final surface application after compaction provided sealed wearing surface.

>Water soluble polymers are limited to low concentrations due to large viscosity increase.

>Starch/sugar and chloride salt based products are performing good.

Lignosulfonate products provided little soil cohesion and are performing good to fair for dust abatement.

>Oil based products provided little soil cohesion however are performing well in preventing dust.

>Polymer emulsions show increased strength of surface and are performing from excellent to good for dust abatement.

Evaluation of HMMWV Distribution System

Evaluation of HMMWV Distribution System

- •Excellent system for use in military operations
- •System provided uniform distribution of material from a compact, user-friendly machine
- •Recommendations were made to the manufacturer for changes that would enhance the performance for needed applications
- •Some changes include:
 - ≻Noise control
 - >Throttle adjustment
 - ➢Pressure control
 - >Increased flow rate

- ≻Larger fuel tank
- **Recirculation/agitation in tank**
- >Anchor points to HMMWV
- >Detailed operators manual

